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Ising Model with Frustration, Elasticity, 
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The Ising model on a compressible triangular lattice with axial next-nearest- 
neighbor interactions is studied in the mean-field approximation. A repre- 
sentative phase diagram is generated, which exhibits first- and second-order 
phase transitions to commensurate modulated phases. The crossover point from 
first to second order transitions is calculated. The stability of the modulated 
phases is calculated analytically in a low-temperature approximation. These 
results are very different from the ANNNI model, which exhibits a second-order 
transition to a continuum of commensurate and incommensurate phases. 
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1. I N T R O D U C T I O N  

Ising models with competing nearest- and next-nearest-neighbor interac- 
tions (ANNNI models) have been shown to exhibit modulated phases, 
both commensurate and incommensurate with the lattice/~-4~ These studies 
have been performed on a square or cubic lattice, where the nearest- 
neighbor ferromagnetic and antiferromagnetic cases are equivalent by a 
simple transformation of spins. Antiferromagnetic nearest-neighbor interac- 
tions on a triangular lattice with global lattice distortions coupled to the 
spin-spin interaction have also been studied, ~SJ and in this case a striped 
phase is found where the ordering is ferromagnetic in one axial direction 
and antiferrorhagnetic in the other two. We looked at a model similar to 
this triangular lattice model, with axial next-nearest-neighbor interactions 
along all three axes. In the mean-field approximation, we found that the 
striped phase was modulated with boundaries perpendicular to those of the 
stripes. While in the ANNNI model, an infinity of commensurate and 

J Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02254. 

739 

0022-4715/96/0500-0739509.50/0 t@~ 1996 Plenum Publishing Corporation 



740 Sobkowicz and Chakraborty 

incommensurate phases is found, our model had only a few commensurate 
modulated phases of relatively short modulation. 

Our motivation for examining this model comes from studies of phase 
stability in CuAu alloys using the effective medium theory (EMT) of cohe- 
sion in metals. (7) These alloys exhibit commensurate modulated phases. 
Effective medium theory allows the approximate energy of an arbitrary 
configuration of atoms in a metal to be expressed in terms of the positions 
and species of the atoms. We make the further approximation that the 
atom positions are on the sites of a triangular lattice which is uniformly 
distorted such that the bond lengths in each of the three directions may be 
different. 

2. T H E  M O D E L  

Our model consists of spins Si = _ I on the sites of a triangular lattice. 
There are three contributions to the energy. One is the elastic energy of the 
lattice, which has the form 

E ,) 
g = -~ (e i + e~_ + e3) + A(e, e2 + eze3 + e3e, ) (I)  

where the e~ are the relative changes in the bond lengths. Young's modulus 
and the Poisson ratio are functions of E and A. The magnetic coupling is 
assumed to depend linearly on the bond distortions, i.e., J , 7 = J ( 1 - e ~ ) .  
The third term is a size-effect or "packing" term, which yields an 
antiferromagnetic interaction between next-nearest neighbors along each of 
the three axes. The Hamiltonian obtained is the same as the one derived 
from effective-medium theory (7)" 2: 

H = E J ( 1 - g e = )  E S, S j + ~  Sj + N e  (2) 
c, (0">,, < 

The model analyzed in ref. 6 corresponded to fixed values of the e~; 
thus there were different but fixed nearest-neighbor antiferromagnetic 
couplings. Under this approximation, the model was shown to behave very 
much like the ANNNI model. (7) The analysis of this paper shows that 
integrating out the displacements leads to a different type of behavior. 

The lattice distortions can be eliminated and an effective spin 
Hamiltonian obtained by minimizing with respect to the three e~. Solving 

2 Effective-medium theory actually yields the term (~i S~) 2, where the sum is over all nearest 
neighbors. This would introduce other interactions besides the axial next-nearest-neighbor 
interactions retained in the current model. 
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these three equations yields the values of the lattice distortions in terms of 
the nearest-neighbor pair correlations along the three axes. For example, 

e~-E2+EA_2A, - (E+A) Y" S, Sj+(-A) ~ S,Sj (3) 
( 0 " ) J  (0")2 ,3  

By substituting the values found for the lattice distortions into (2), the 
elastic term and the spin-lattice coupling term both become four-spin 
terms where nearest-neighbor pairs are coupled by an infinite range inter- 
action. The resulting Hamiltonian is 

H = J 2  s SiSi+ 2 Si 
a </ j>= " \ < 0 " > ~  / 

+ E F~a ~_, S, Sj ~, SkS, (4) 
=,/~ <U>= <k/>a 

The F=a are polynomial fractions of E and A which are found in the above 
substitution. 

In ref. 5, an exact solution was obtained to the above model with 
K = 0 and it was shown that there is always a strong first- order transition 
from the disordered to the striped phase. The striped phase is considered 
as the uniform phase in our work and we look for the appearance of 
modulated phases at finite K. In the alloy context, the striped phase is the 
two-dimensional analog of the L10, CuAu phase. 

3. MEAN-FIELD CALCULATIONS 

To find the spatially modulated phases in the mean-field approxima- 
tion, we used the original Hamiltonian (2). We looked only for one-dimen- 
sional modulated phases, assuming that the average spin was the same in 
each vertical column (where the modulation is chosen to be in the horizon- 
tal direction). In addition, the striped phase, which is known to be the 
ground state for 0 K, is taken as the unmodulated phase, so the average 
spin in each column is multiplied by ( -  1)~', where/t labels the column. 
This procedffre yields a one-dimensional chain of average spins for which 
we can write the mean field equations. This procedure is similar to that 
used by Bak and von Boehm to find the mean-field phase diagram for the 
ANNNI model. ~1~ The effective field at site # can be written as 

h,, = E L,,,(S,,) (5) 
V 
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The J~,,, are the projections of the J( 1 - ee=) onto the horizontal direc- 
tion. If the fields are known, the spins can be calculated from the equation 

( St, ) = tanh(hJT)  (6) 

The two mean-field equations must be solved self-consistently. The Jt, v 
depend on the (S~,) through e= and are recalculated at each step. For each 
value of K and T the equations were solved iteratively for initial conditions 
of varying periodicity. The longest initial periodicity was 20. There were 
several self-consistent solutions for most values of K and T, depending on 
their initial conditions chosen. When several self-consistent solutions were 
found for some K and T, the solution with the lowest free energy was taken 
as the solution. 

4. P H A S E  D I A G R A M  

Two representative phase diagrams are shown (Figs. 1 and 2). The 
parameters for each are the same except for the coupling strength e, which 
is higher in Fig. 2. Each diagram exhibits three ordered regions. The low 
temperature, low-K state is a striped phase, consisting of alternating rows 
of up and down spins, the same as found by Chen and Kardar  (5) in the 
exact 0 K solution. At higher values of K (and low temperature), this solu- 
tion becomes modulated in a direction perpendicular to the stripes with the 
period of modulation equal to two lattice lengths. This phase is labeled the 
( 2 )  phase. This phase is favored at large values of K since the second- 
nearest-neighbor pairs are antiferromagnetic along two of the three axes in 
the ( 2 )  phase and one of the three in the striped phase. This energy term 
competes with the elastic energy term, which favors the striped phase. In 
each phase diagram, there is a higher temperature modulated phase labeled 
the ( 3 )  phase, which retains the symmetry of the lattice. This phase is 
formed by dividing the lattice into three sublattices, one of up spins, one 
of down spins, and one which is disordered. The lattice distortions in this 
phase are the same in the three axial directions. 

The transition to the striped phase  involves two broken symmetries: 
one corresponding to the Ising spin and the other a three-state Potts sym- 
metry associated with the change in bond lengths. (5) The transition to the 
( 3 )  state does not break the three-state Potts symmetry. 

Two representative mean-field phase diagrams for parameter values 
E = 5, A = 2, and J = 1 are shown in Figs. 1 and 2. For  e = 1, Fig. 1 shows 
a second-order transition from the disordered to the ( 3 )  phase for all 
values of K. There is a subsequent first-order transition from the ( 3 )  phase 
to the striped phase, or the ( 2 )  phase, at a lower temperatures. In their 
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Fig. 1. 
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The mean-field phase diagram for a small coupling to the lattice(E= 5, A = 5, J =  1, 
and e = 1). The transition to the (3) phase at K= 0 is a mean-field artifact. (5) 

exact solution of the K = 0  case of this model, Chen and Kardar  have 
shown that there is a first-order transition to the striped phase for all 
values of e, E, and A. Thus at least at K = 0, the ( 3 )  phase is a mean-field 
artifact. The long-range nature of the four-spin interaction in Eq. (4) could 
have led one to believe that a mean-field analysis of this model would be 
adequate; however, the numerical evidence is contrary to this expectation. 
It is also known from the analysis of nonfrustrated compressible Ising 
models that fluctuations beyond meanfield can change the nature of the 
transition. (6~ 

The phase digram for e = 2, shown in Fig. 2, is qualitatively different 
from the phase diagram for e = 1. For  small values of  K, there is a first- 
order transition from the disordered to the striped phase with no inter- 
vening ( 3 )  phase. At higher values of K, there is a sequence of two transi- 
tions: a second-order transition from the disordered to the ( 3 )  phase 
followed by a first-order transition either to the striped phase or the ( 3 )  
phase. This is reminiscent of  the sequence of transition seen in CuAu. 

In order to analyze the mean-field phase diagrams, we transform 
Eq. (2) using the Hubbard-St ra tanovich  transformation 3 and study the 
Lagrangian density in q-space. If  the transition is second order, the quadratic 

For a review of the Hubbard-Stratanovich transformation, see Amit. (8~ 
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Fig .  2. The mean-field phase diagram for a larger coupling to the lattice (e = 2 )  but the same 
values as F i g .  1 of all the other parameters. The dashed-dotted lines are results of low-tem- 
perature calculations (see discussion in text). The line of crosses denotes the line of anticipated 
second-order transitions to the ( 3 )  phase (see discussion in text), and the vertical line marks 
the value of K where the transition to the ( 3 )  phase becomes first order. 

term determines the transition temperature and the transition is to the 
phase where J(q) is a minimum. In our model, the transformed interaction 
term J(q) can be split into a part independent of the lattice deformations, 
Jo(q), and a part linearly dependent on the deformations, Jl(q). The latter 
term contributes in higher order after the deformations are eliminated by 
performing the Gaussian integral over the e~ and therefore the quadratic 
term involves Jo(q) only: 

,.~quadratic = f l  ~ J o ( q ) [  1 - -  2 f l J o ( q )  ] ffq~b _ q  

q 

(7) 

In our model, Jo(q) is a minimum for q = 2n/3 for all K, corresponding 
to the ( 3 )  phase. This is in contrast to the A N N N I  model, where q varies 
with the second-neighbor coupling. The second-order transition tem- 
perature to the ( 3 )  phase is Tc=2Jo(q) at q=2n/3. Mean-field theory 
would therefore predict a second-order transition from the disordered to 
the ( 3 )  phase for all values of K and e unless this is preempted by a first- 
order transition. Thy transition from the disordered to the striped phase is 
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therefore always first order and stabilized by the quartic term in the 
Lagrangian density. The transition from the disordered to the (3 )  phase 
can also become first order in mean-field theory if the coefficient of the 
quartic term becomes negative. In that case, the sequence of transitions is 
determined by the numerical values of the first-order transition tem- 
peratures from the disordered to the striped phas and the disordered to the 
( 3 ) phase. 

To locate the point where the transition to the (3 )  phase changes 
from second order to first order, we look at the quartic part of L#. If the 
sign of the coefficient of the ~,4 term is negative at the second-order transi- 
tion temperature, the second-order transition is preempted by a first-order 
transition. Keeping terms up to second order in e~, the displacement 
integrals are Gaussian and the e~ can be eliminated to obtain an effective 
spin Lagrangian. We first solve for the e~ in much the same way as we did 
to get Eq. (4), but now specifically in the (3 )  phase, where the e~ are all 
equal, as the ( 3 )  phase retains the symmetry of the lattice. By minimizing 
~(e~) we find that 

e J(1 - 12fl(J+K)) 
- ~,,~,_,1 (8) e~ N(E+ 2A)_36e,_j2fl~bq~_q 

Substituting this back into s there are several contributions to the 
quartic term of the effective spin Lagrangian. The first is from the expan- 
sion of the log[cosh(2flJ)] yielded by the Hubbard-Stratanovich transfor- 
mation. The second is from the substitution of e~ into the quadratic term, 
and the third is the quartic part of the elastic term. We have 

~  ~ [ 108f14(J+ K)4 3e2j2fl[1g+- 12fl(J+K)]Z2A 

3 2 2 1 +~_e J fl[1-12fl(J + K)] 2j ~,4 
-E--+ 2-A " (9) 

Note that the elastic term is opposite in sign and exactly one-half the 
magnitude of the coupling term. Near the second-order transition, the fl 
can be replaced by I / [6 ( J+K)] .  The condition for the quartic term to be 
negative, and thus for the phase transition to be first order, is 

3e2J 2 
K <  - J  (10) 

E +  2A 

This condition is shown as a vertical line in Fig. 1. This line would 
move to higher values of K with increasing e and one could envisage a 
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situation where there is a first-order transition to the ( 3 )  phase followed 
by a first-order transition to the striped phase as the temperature is 
lowered. Our numerical results, for the range of e studied, show a first- 
order transition only to the striped phase, suggesting that the quartic term 
favors the striped phase over the full range of K. 

The transition from the disordered to the ( 3 )  phase is exactly 
analogous to the ferromagnetic transition in a compressible Ising model. 16~ 
This transition is known to be driven first order, for all values of coupling 
to the lattice, by fluctuations beyond mean field and we expect the same 
scenario for the disordered ~ ( 3 )  transition. 

The line of crosses in Fig. 2 show the anticipated second-order transi- 
tion into the ( 3 )  phase obtained from Tc=2Jo(q)  at q=2~/3,  As seen 
from the phase diagram, there is a range of K for which this second-order 
transition is preempted by the first-order transition to the striped phase. 
The calculations suggest that there is a point in this phase diagram where 
the disordered, striped, and ( 3 )  phases meet. Numerically, this point is 
close to the critical value of K where the transition to the ( 3 )  phase 
becomes first order. However, the accuracy of our numerical calculations 
was not sufficient to conclusively demonstrate the existence of this point. 
This triple point is reminiscent of the Lifshitz point found in ANNNI 
models, but is not a multicritical point, since we have two first-order and 
one second-order transition lines meeting at this point. Moreover, the 
ordering wavevector has a finite jump from zero to 2rt/3 at this point, in 
contrast to the ANNNI model, where this wavevector changes con- 
tinuously. 

At low temperatures, the transitions between the phases can be 
calculated analytically, if we make the approximation that the average 
spins, the ( S i ) ,  are either 1, - 1 ,  or 0. In this case the energy for each 
phase can be calculated, and the entropy per spin is ln(2) times the fraction 
of zeros. In the striped phase 

(SiSj)<o.>, = +1 and (S ;S j )  <0>_,.~= - 1  

Substituting these values into (4) and calculating the K term in a similar 
manner, one obtains 

3E + 5A 
H striped = - J +  6 K -  eZJ2E2 + EA - 2A 2 ( I 1 ) 

In the ( 3 )  phase, (S ;S j )  <ij>~ for all oc. In this phase, the energy is 

E - A  
H <3> = - J q -  2 K -  e'-J 2 

3 ( E 2 + E A  - 2 A  2) 
(12) 
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In the (3 )  phase, (SiSj)<o.>,  and (SiSj)<u>,3 Here, the energy is 

E + A  
H < 2> = _ j + 2 K - -  e2J2E2 + E A  - 2A z (13) 

The calculated transition line between two states is where the free 
energies of the two states are equal. The entropy is zero in both the striped 
phase and the <2> phase, and is [Nlog(2)]/3 in the <3> phase. The 
calculated transition lines are shown as broken lines in Fig. 2. The 
calculated line between the striped and the ( 2 )  phases is too close to 
the numerical results to appear separate. 

5. D I S C U S S I O N  

The mean-field phase diagram of our model exhibits both first-and 
second-order phase transitions to ordered unmodulated and modulated 
phases. The transitions differ in nature from the ANNNI model, with the 
striped phase (corresponding to the ferromagnetic phase of the ANNNI 
model) being stabilized by the elastic interactions. The K = 0  model has 
only a single, first-order, transition from the disordered to the striped 
phase, tS~ In the absence of elastic interactions, there is no ordering in this 
model. Our mean-field calculations show that the the stability of the (3 > 
phase is enhanced at finite K. The numerical mean-field results did not 
exhibit any first-order transition to the modulated < 3 > phase. However, we 
have found no arguments to rule out this possibility. Moreover, all the 
transitions become first-order beyond mean field because of the existence of 
the long-range four-spin interaction [cf. Eq. (4)]. 

This model was inspired by microscopic calculations of alloy phase 
diagrams where there is a sequence of disordered =:, modula ted  =, s tr iped 

transitions as the temperature is lowered. The model considered in this 
paper shows such a sequence for a range of K values. The modulated phase 
found in this model is, however, not a true long-period structure. The 
modulated phases found in the alloys are closer to <10> than to (3>. 
Finding such long-period structures may require the minimum of J(q)  to 
vary as a function of the magnitude of the longer range interactions, as 
measured by "K. 

The original EMT interactions, which were approximated in this 
model to axial second-neighbor interactions (see Footnote 2), can be 
expressed as 

822/83/3-4-30 
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where all the nearest-neighbor spins are summed and squared, does have 
this property. The minimum of J(q) for this model is not a constant and 
changes continuously from 2rt/3 at small K to 4~/3 at large K. This model 
might be the right candidate for finding the type of modulated structures 
that we are looking for. Future work may involve examining similar 
models on a face-centered-cubic lattice; such models may shed further light 
on modulated ordering in binary alloys. 

In conclusion, we have shown that there exists a class of models which 
can be derived from microscopic descriptions of interactions in  metallic 
alloys which (i) have short-range competing Ising interactions and (ii) 
exhibit modulated phases separated by first-order transitions from the dis- 
ordered and the unmodulated structures. This combination of properties is 
commonly observed in metallic alloys. The model is interesting in its own 
right because it combines short-range competing interactions with long- 
range four-spin interactions arising from the strain fields. 

Our analysis has certain implications for Fermi-surface driven 
instabilities in alloys. The scenario, in the absence of elastic interactions, is 
that the disordered state has an instability at a certain q vector which is 
determined by Fermi surface nesting, and orders into this particular 
ordered structure (see ref. 9 for a review). At lower temperatures, locking 
into commensurate phases can occur, just as in the ANNNI model. We 
would like to suggest an alternate scenario where the lower temperature 
phase is favored by the coupling to elastic strain just as the striped phase 
is in our model. This would explain the occurrence of a ground state which 
is different from that prejdicted from Fermi-surface nesting, and it would 
explain why the transitions are first order. 
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